Exercise 80

If the equation of motion of a particle is given by $s=A \cos (\omega t+\delta)$, the particle is said to undergo simple harmonic motion.
(a) Find the velocity of the particle at time t.
(b) When is the velocity 0 ?

Solution

The velocity is the derivative of the displacement function.

$$
\begin{aligned}
v(t) & =\frac{d s}{d t} \\
& =\frac{d}{d t}[A \cos (\omega t+\delta)] \\
& =A \frac{d}{d t}[\cos (\omega t+\delta)] \\
& =A\left[-\sin (\omega t+\delta) \cdot \frac{d}{d t}(\omega t+\delta)\right] \\
& =A[-\sin (\omega t+\delta) \cdot(\omega)] \\
& =-A \omega \sin (\omega t+\delta)
\end{aligned}
$$

It's zero whenever the argument of sine is an integer multiple of π,

$$
\omega t+\delta=n \pi, \quad n=0, \pm 1, \pm 2
$$

that is,

$$
t=\frac{n \pi-\delta}{\omega} .
$$

